Filtracja Zasilania: Zasada Działania i Zastosowanie

Przez kilkadziesiąt lat rozwoju elektroniki na rynku pojawiły się tysiące grup i odmian elementów elektronicznych. Niektóre z nich stanowią bazę, bez której nie można wyobrazić sobie żadnego, nawet najprostszego układu elektronicznego. Kondensatory to elementy elektroniczne lub elektryczne. Do ich produkcji wykorzystano parę przewodników, które są często określane jako okładki. Pomiędzy nimi znajduje się dielektryk, czyli izolator.

W momencie, gdy zostanie podane napięcie stałe, ładunki charakteryzujące się przeciwnymi znakami zaczynają się gromadzić na przewodnikach (okładkach). Gdy napięcie zostanie odłączone, wspomniane ładunki nadal znajdują się na okładkach. W takiej sytuacji kondensator jest naładowany. Jednostką opisującą kondensatory jest farad (F).

Co to jest kondensator? Budowa i zasada działania

Budowa i zasada działania kondensatora są banalnie proste - dwie płaszczyzny przewodnika (najczęściej metalu), zwane fachowo okładkami, oddzielone są od siebie cienką warstwą dielektryka (izolatora). Po przyłożeniu do nich napięcia stałego, ładunki o przeciwnych znakach gromadzą się na odpowiednich okładkach - jest to efekt wytworzonego pomiędzy nimi jednorodnego pola elektrycznego. Miarą ilości ładunków, które może zgromadzić dany kondensator, jest jego pojemność. Wyrażamy ją w faradach (F), choć zdecydowana większość kondensatorów ma pojemności znacznie mniejsze, rzędu bilionowych (pF - pikofarad), miliardowych (nF - nanofarad) czy milionowych (uF - mikrofarad) części jednostki podstawowej.

przy czym stała ε0 oznacza tzw. przenikalność dielektryczną próżni (równą w przybliżeniu 8,85 * 10-12 F/m), zaś εr to względna przenikalność dielektryczna zastosowanego dielektryka. Jak widać, na pojemność kondensatora możemy wpłynąć modyfikując trzy parametry: powierzchnię okładek, odległość pomiędzy nimi oraz przenikalność izolatora. Jeżeli chcemy uzyskać kondensator o dużej pojemności, powinniśmy zastosować duże okładki, zmniejszyć odległość pomiędzy nimi oraz zastosować możliwie „dobry” dielektryk.

Nie ma jednak nic za darmo: zwiększając powierzchnię okładek, nieuchronnie zwiększamy gabaryty kondensatora, zaś zmniejszając odległość pomiędzy okładkami, obniżamy maksymalne napięcie, z jakim może pracować kondensator. W przypadku tzw. kondensatorów foliowych, okładki mają postać długich pasków cienkiej, metalowej folii, przedzielonych równie długim i cienkim paskiem folii z odpowiedniego tworzywa sztucznego.

Przeczytaj także: Skuteczna filtracja wody w basenie

Nieco inną budowę mają kondensatory elektrolityczne - ich pojemności są wielokrotnie wyższe, ponieważ rolę dielektryka pełni wytworzona chemicznie, cienka warstwa tlenku na powierzchni jednej z okładek. Dzięki niezwykle małej grubości tlenku oraz dużej powierzchni okładek (uzyskanej poprzez chemiczne trawienie metalowej folii), pojemności kondensatorów elektrolitycznych są bardzo wysokie - generalną zasadą jest przy tym, że jeżeli dwa kondensatory o zbliżonej kubaturze różnią się pojemnością, to najczęściej kondensator o dużej pojemności będzie miał niższe dopuszczalne napięcie pracy.

Rodzaje Kondensatorów

Kondensatory występują w różnych kształtach i rozmiarach, które wpływają na ich zdolność do magazynowania ładunku. Kondensatory - rodzaje: wspomniane wcześniej kondensatory foliowe charakteryzują się dobrą stabilnością parametrów (przede wszystkim pojemności), potrafią też pracować przy wysokich napięciach (rzędu kilkuset woltów). Z tego względu są chętnie stosowane przede wszystkim w sieciowych obwodach zasilania.

Kondensatory elektrolityczne oferują bardzo wysokie pojemności (od pojedynczych mikrofaradów do kilkudziesięciu faradów - w tym ostatnim przypadku mówimy o tzw. superkondensatorach). Zazwyczaj jednak jest to okupione albo sporymi wymiarami, albo niskim napięciem maksymalnym. Te rodzaje kondensatorów mają dość małą dokładność pojemności (często rzędu +/- 20 %) i wykazują dość spore wahania tego parametru w funkcji temperatury otoczenia, napięcia pracy oraz… czasu, czyli - prościej mówiąc - mają tendencje do starzenia się.

Rozróżniamy dwie główne grupy kondensatorów elektrolitycznych: aluminiowe (tańsze, ale o nieco gorszych parametrach) i tantalowe (drogie, ale wysokiej klasy). Warto dodać, że czołowi producenci kondensatorów stale pracują nad nowymi rodzajami kondensatorów, zbliżonych budową do obecnie stosowanych elementów, jednak oferujących jeszcze lepsze parametry elektryczne. Kondensatory elektrolityczne występują zarówno w formie elementów do montażu przewlekanego (THT), jak i powierzchniowego (SMD).

Trzecią - oprócz wyżej wymienionych - grupą najczęściej stosowanych kondensatorów są kondensatory ceramiczne. Ich budowa jest nieco zbliżona do kondensatorów foliowych, choć - z uwagi na kruchość ceramiki - okładziny nie są oczywiście zwijane w postaci spirali, ale układane niejako „równolegle” w postaci wielowarstwowej „kanapki”. Kondensatory te charakteryzują się najniższymi spośród wymienionych odmian elementów pojemnościami (od pojedynczych pikofaradów do kilkunastu mikrofaradów), mają jednak inne, bardzo korzystne z praktycznego punktu widzenia cechy: oferują dobrą (lub nawet doskonałą) stabilność temperaturową, małą tolerancję pojemnościową (czyli dokładnie „trzymają” nominalną pojemność, określoną przez producenta) oraz małe straty.

Przeczytaj także: Definicja i pomiar filtracji kłębuszkowej

Także w tym przypadku kondensatory mogą występować zarówno w obudowach do montażu przewlekanego, jak i powierzchniowego. Schematyczne oznaczenie kondensatora elektrolitycznego różni się od oznaczenia innych typów kondensatorów z uwagi na tzw. Polaryzacja kondensatorów elektrolitycznych, czyli jak podłączyć, by uniknąć wybuchu: Tak, to prawda - kondensator elektrolityczny (szczególnie o większych wymiarach) potrafi eksplodować, jeżeli zostanie niewłaściwie zastosowany. Istnieją dwa główne scenariusze układowe, których elektrolity „nie znoszą”. Pierwszy z nich, jak zresztą dla każdego kondensatora (i nie tylko) wiąże się z przekroczeniem maksymalnego napięcia pracy.

Kondensatory elektrolityczne są na to szczególnie „wyczulone”, z uwagi na wspomnianą wcześniej bardzo niewielką grubość dielektryka. Ta „wrażliwość” kondensatorów elektrolitycznych wynika z zachowania płynnego elektrolitu - odwrotne napięcie powoduje gwałtowne wytwarzanie gazów, które po przekroczeniu granicy wytrzymałości obudowy kondensatora mogą doprowadzić do jego wybuchu. Z tego powodu nie należy stosować kondensatorów elektrolitycznych w tych miejscach układu, w których polaryzacja napięcia może osiągać różne znaki (przede wszystkim dotyczy to napięć przemiennych).

Ładowanie i rozładowanie kondensatora

Teoretycznie kondensator powinien utrzymywać stan naładowania dowolnie długo, o ile nie zostanie podłączony do obciążenia, które spowodowałoby przepływ prądu i w efekcie rozładowanie kondensatora (spadek napięcia pomiędzy okładkami kondensatora do zera). Kondensator, nawet jeżeli zostanie całkowicie odłączony od reszty układu, i tak po pewnym czasie ulegnie tzw. samorozładowaniu - wynika to z nieidealnych właściwości dielektryka, przez który zawsze może przepłynąć pewien (znikomy, ale jednak) prąd.

Jeżeli natomiast kondensator zostanie podłączony do obciążenia (np. rezystora), napięcie na nim spadnie, a czas spadku będzie zależny od wartości prądu rozładowania. Im większa jest (zastępcza) rezystancja obciążenia lub pojemność kondensatora, tym dłuższy jest czas rozładowywania do określonej wartości.

gdzie τ oznacza tzw. stałą czasową, określającą czas, w którym napięcie spadnie (podczas rozładowania) lub wzrośnie (podczas ładowania) o ok. 63,2 % wartości maksymalnej. Warto zwrócić uwagę, że (roz)ładowanie kondensatora przez rezystor następuje silnie nieliniowo. Dokładniej rzecz biorąc, przebiegi napięcia (a także prądów) mają kształt krzywej wykładniczej. W niektórych układach jest jednak możliwe uzyskanie liniowego (jednostajnego) wzrostu lub spadku napięcia na kondensatorze - jest to możliwe przy zastosowaniu źródła prądowego bezpośrednio z kondensatorem.

Przeczytaj także: Webber AP8400 - wymiana filtrów

Łączenie kondensatorów

Podobnie jak w przypadku rezystorów, także kondensatory mogą być łączone zarówno szeregowo, jak i równolegle. Warto zwrócić uwagę, że forma ww. Kondensatory wyróżniają się bardzo szerokim zastosowaniem nie tylko w elektryce i elektronice, ale również innych w dziedzinach. Kondensatory rozruchowe, jak sama nazwa podpowiada, są wykorzystywane do błyskawicznego rozruchu silnika. Innymi słowy, kondensatory są odpowiedzialne za natychmiastowe dostarczenie dużej ilości energii niezbędnej do uruchomienia jednostki napędowej.

Kondensator - do czego służy? Filtracja zasilania

Jednym z podstawowych, najprostszych i jednocześnie najczęściej stosowanych układów pracy kondensatorów są filtry oraz odsprzęganie zasilania. Filtracja napięcia lub - prościej mówiąc - „wygładzanie” napięcia zasilania jest możliwe dzięki pojemności kondensatora. Naładowany kondensator, włączony równolegle do napięcia zasilania układu lub jego części, jest w stanie szybko oddać potrzebną ilość energii, jeżeli w danym momencie rośnie pobór prądu zasilania danego obwodu.

Dlatego w obwodach zasilania stosuje się równoległe połączenie obu tych rodzajów kondensatorów. Odsprzęganie w to ogólne określenie metod „separowania” poszczególnych bloków urządzenia w taki sposób, aby zakłócenia generowane przez jeden obwód nie przenosiły się na drugi poprzez szyny zasilania. Najczęściej stosowane w praktyce są kondensatory ceramiczne o wartości rzędu 47..100 nF (odsprzęganie oraz filtracja wysokich częstotliwości) oraz elektrolityczne o pojemności, zależnej od pobieranego prądu.

Kondensatory jako elementy elektroniczne lub elektryczne są wykorzystywane do filtrowania, a także odsprzęgania zasilania. Co to oznacza w praktyce? Filtrowanie jest niczym innym jak „wygładzaniem” napięcia przy wykorzystaniu pojemności kondensatora.

Dodatkowe Zastosowania Kondensatorów

Kondensator - Do czego służy? Jeżeli masz pod ręką rezystor i kondensator, możesz bez problemu zbudować z pomocą tych dwóch elementów całkiem przyzwoite, choć proste filtry, pozwalające na kształtowanie charakterystyk częstotliwościowych sygnałów. Co ciekawe i ważne, sposób działania filtru zależy od wzajemnego połączenia obu elementów, zaś parametry elektryczne - od oporności rezystora i pojemności kondensatora.

Kondensatory wchodzą w skład obwodów LC - połączenie cewki i kondensatora ma bowiem szczególnie ciekawe właściwości. Parametry takiego obwodu (zarówno szeregowego, jak i równoległego) także - podobnie, jak w przypadku obwodu RC - zmieniają się w zależności od częstotliwości sygnału, jednak w diametralnie inny sposób. Przykładowo, obwód równoległy znacząco zwiększa swoją impedancję dla sygnałów o tzw. częstotliwości rezonansowej i zmniejsza ją dla innych zakresów pasma.

Obwody LC były niegdyś bardzo chętnie stosowane w wielu urządzeniach, szczególnie układach radiowych. Nie sposób w krótkim artykule ująć nawet znacznej części najbardziej klasycznych zastosowań kondensatorów. Wiedza teoretyczna to nie wszystko - warto wzbogacić ją o praktykę. Właściwie powinny iść w parze.

Filtrowanie zasilania - elementy indukcyjne

Istnieje wiele elementów elektronicznych, zwłaszcza analogowych lub analogowo-cyfrowych, takich jak czułe wzmacniacze we front-endach pomiarowych, których parametry i jakość działania silnie zależną od parametrów napięcia zasilającego. Doprowadzenie zasilania wysokiej jakości do poszczególnych elementów nie jest możliwe bez użycia elementów indukcyjnych w liniach zasilania.

Jest chyba zupełnie zrozumiałe, że każdy układ analogowy, który zasilany jest napięciem stałym, będzie działał inaczej, jeżeli na szynie zasilania pojawi się składowa zmienna. Niestety rzeczywistość, jak zwykle, jest bardziej skomplikowana niż symulacje i bardzo często w sygnale zasilania obecna jest składowa zmienna. Jej źródła mogą być bardzo różne - od systemów zasilania, które mogą niewystarczająco skutecznie blokować sygnały zmienne pochodzące z napięcia sieciowego (tętnienie o częstotliwości 100 Hz) lub z przetwornic impulsowych (o częstotliwości równej częstotliwości przełączania kluczy w układzie lub ich wyższych harmonicznych), aż po oznaki działania innych elementów w systemie, zwłaszcza elementów wysokiej mocy, które pobierając cyklicznie duże ilości prądu, mogą wywoływać silne zakłócenia w szynie zasilającej.

O tym, jak mocno wpływają zakłócenia w sieci zasilania na układy analogowe, mówi parametr PSRR, określany w ich kartach analogowych. Jest to Power Supply Rejection Rate, czyli współczynnik odrzucenia wpływu zasilania. Współczynnik PSRR jest miarą odrzucenia sygnału zmiennego zasilacza przez analizowany układ, wyrażoną, jako stosunek logarytmiczny szumu wyjściowego do szumu wejściowego zasilania. PSRR stanowi miarę tego, jak dobrze obwód tłumi tętnienia o różnych częstotliwościach wprowadzane na wejściu zasilającym. Na równaniu 1 zaprezentowano wzór do jego wyznaczania.

Parametr ten wyrażony jest w decybelach (dB) i na ogół podaje się go jako wartość dotyczącą szerokiego zakresu częstotliwości (typowo od 10 Hz do 1 MHz). Widać zatem, jak ważne jest filtrowanie składowej zmiennej z linii zasilania. Jednym z sposobów na filtrowanie zasilania jest umieszczenie w sygnale indukcyjności. Element indukcyjny wykazuje opór tym wyższy, im wyższa jest częstotliwość sygnału, co oznacza, że tłumi sygnały zmienne.

Filtrowanie szumów o niskiej częstotliwości zwykle wymaga kondensatorów elektrolitycznych (zazwyczaj o pojemności w zakresie od 1 μF do 100 μF), które działają jako magazyn ładunku dla prądów przejściowych o niskiej częstotliwości. Szum zasilania o wysokiej częstotliwości jest najlepiej redukowany za pomocą kondensatorów ceramicznych o niskiej indukcyjności, montowanych powierzchniowo, podłączonych bezpośrednio do styków zasilania układu scalonego (zwykle od 10 nF do 100 nF). Wszystkie kondensatory filtrujące muszą być podłączone bezpośrednio do wylewki masy o niskiej impedancji, aby skutecznie działały. Do tego połączenia wymagane są krótkie ścieżki lub przelotki, aby zminimalizować dodatkową indukcyjność szeregową ścieżek.

Koraliki ferrytowe

Można tam dostrzec jeszcze jeden element, który odpowiada za filtrowanie napięcia - koralik ferrytowy. Przy niskich częstotliwościach (<100 kHz) ferryty mają charakter indukcyjny, dlatego są przydatne w dolnoprzepustowych filtrach filtrujących LC. Powyżej 100 kHz ferryty stają się głównie rezystancyjne (niskie Q). Impedancja ferrytu jest funkcją materiału, zakresu częstotliwości pracy, prądu polaryzacji stałoprądowej, liczby zwojów, rozmiaru, kształtu i temperatury.

Koraliki ferrytowe nie zawsze są konieczne, ale zapewniają dodatkową izolację i filtrowanie zasilania od szumów o wysokiej częstotliwości, co jest często bardzo pożądane. Głównym problemem przy ich stosowaniu jest szansa ich nasycania, szczególnie w momencie, gdy zasilany układ pobiera spory prąd. Kiedy ferryt ulega nasyceniu, wtedy staje się nieliniowy i traci swoje właściwości filtrujące.

Niektóre ferryty, nawet zanim nastąpi pełne nasycenie, mogą zachowywać się nieliniowo. Dlatego też, jeśli wymagany jest stopień mocy przystosowany do pracy z niskim poziomem zniekształceń wyjściowych, należy koralik sprawdzić w prototypie, zwłaszcza to, jak działa w pobliżu obszaru nasycenia. Typowy przebieg impedancji koralików ferrytowych pokazano na rysunku 2. Kształt tej krzywej zależny jest od materiału rdzenia - ferrytu - jaki zastosowano do konstrukcji koralika.

Koralik ferrytowy można modelować jako obwód składający się z rezystorów, cewki indukcyjnej i kondensatora, jak pokazano na schemacie z rysunku 4. Rezystancja RDC odpowiada rezystancji stałoprądowej. Charakterystyka koralika ferrytowego jest podzielona na trzy obszary odpowiedzi: indukcyjny, rezystancyjny i pojemnościowy. Regiony te można określić, patrząc na wykres Z, R i X (pokazane na rysunku 4), gdzie Z to impedancja, R to opór, a X to reaktancja koralika.

Aby zredukować szum wysokiej częstości, koralik musi znajdować się w obszarze rezystancyjnym. Wtedy element ten działa jak rezystor, który tłumi szumy o wysokiej częstotliwości i rozprasza je w postaci ciepła. Obszar rezystancyjny występuje powyżej częstotliwości rozgraniczającej (gdzie X = R) i do momentu, w którym koralik przyjmuje charakter pojemnościowy.

Rezonans w układach LC

W przypadku zastosowania koralika ferrytowego wraz z kondensatorem filtrującym możliwe jest zaobserwowanie rezonansu w układzie LC. Ten często pomijany efekt może być szkodliwy, ponieważ może wzmacniać tętnienia i szumy w danym systemie, zamiast je tłumić. Punkt szczytowy rezonansu występuje, gdy częstotliwość rezonansowa filtra dolnoprzepustowego, utworzonego przez indukcyjność koralika ferrytowego i pojemność kondensatora o wysokim współczynniku dobroci, jest niższa od częstotliwości granicznej tego koralika. Powstały filtr jest słabo tłumiony.

Składnik rezystancyjny, od którego zależy rozproszenie niepożądanej energii, nie staje się istotny, aż do osiągnięcia zakresu od 20 MHz do 30 MHz. Poniżej tej częstotliwości koralik ferrytowy nadal ma bardzo wysokie Q i zachowuje się jak idealna cewka indukcyjna. Częstotliwości rezonansowe typowych filtrów LC tego typu mieszczą się na ogół w zakresie od 0,1 MHz do 10 MHz.

Jako przykład tego efektu rysunek 7 prezentuje odpowiedź częstotliwościową filtra dolnoprzepustowego zbudowanego z koralika i kondensatora. Na wykresie widać efekt szpilki. Zastosowany koralik ferrytowy to TDK MPZ1608S101A (100 Ω, 3 A, SMD0603), a kondensator to Murata GRM188R71H103KA01 o niskim ESR (10 nF, X7R, SMD0603).

Nietłumiony filtr z koralików ferrytowych może wykazywać wartości szczytowe od około 10 dB do 15 dB wyższe, w zależności od dobroci Q obwodu filtra. Na rysunku 6 szczyt występuje przy około 2,5 MHz przy wzmocnieniu aż 10 dB. Dodatkowo widać wzmocnienie sygnału w zakresie od 1 MHz do 3,5 MHz. Ten wzrost jest problematyczny, jeśli występuje w paśmie częstotliwości, w którym działa np. stabilizator impulsowy.

Wzmacnia to niepożądane artefakty przełączania, które mogą zakłócać wrażliwe elementy układu, takie jak pętla synchronizacji fazowej (PLL), oscylatory sterowane napięciem (VCO) czy przetworniki analogowo-cyfrowe o wysokiej rozdzielczości (ADC). Wynik pokazany na rysunku 6 został uzyskany przy bardzo małym obciążeniu, ale jest to realistyczne zastosowanie w sekcjach obwodów, które potrzebują tylko do 1 mA prądu.

Metody tłumienia rezonansu

Poniżej opisano trzy metody tłumienia, które można zastosować w celu znacznego zmniejszenia poziomu wzmocnienia w zakresie rezonansu układu LC. Druga metoda podobna jest do pierwszej i polega na dodaniu równoległego rezystora o niewielkim oporze do koralika ferrytowego, co również tłumi rezonans systemu.

Na rysunkach 11 i 12 jest pokazana krzywa impedancji w funkcji częstotliwości dla przykładowego koralika MPZ1608S101A i bez rezystora równoległego 10 Ω. Impedancja łączna koralika i rezystora jest znacznie zmniejszona i jest zdominowana przez rezystor 10 Ω. Jednak częstotliwość graniczna równa 3,8 MHz dla koralika z rezystorem równoległym 10 Ω jest znacznie niższa niż częstotliwość graniczna samego koralika - wypadająca przy 40,3 MHz.

Ta metoda polega na dodaniu dużego kondensatora (CDAMP) z szeregowym rezystorem tłumiącym (RDAMP), co często jest optymalnym, ale niekoniecznie najprostszym rozwiązaniem. Dodanie tego kondensatora i rezystora tłumi rezonans systemu i nie obniża skuteczności filtrowania linii zasilania przy wysokich częstotliwościach.

Zastosowanie tej metody pozwala uniknąć nadmiernego rozpraszania mocy na rezystorze z powodu dużego kondensatora filtrującego dla napięcia stałego. Kondensator musi być znacznie większy niż suma wszystkich kondensatorów filtrujących, co zmniejsza wymaganą wartość rezystora tłumiącego.

Rysunek 13 pokazuje wykres widmowy wyjścia dodatniego z ADP5071 z zaimplementowanym tłumieniem metodą C w obwodzie aplikacyjnym pokazanym na rysunku 8. Zastosowane CDAMP i RDAMP to odpowiednio kondensator ceramiczny 1 μF i rezystor 2 Ω SMD. Ogólnie rzecz biorąc, metoda C jest najbardziej efektywna i jest realizowana przez dodanie rezystora szeregowo z kondensatorem ceramicznym zamiast kupowania drogiego kondensatora tłumiącego. Charakteryzuje ją wysoki stosunek efektu do ceny, mimo najbardziej skomplikowanego obwodu.

Najbezpieczniejsze projekty zawsze zawierają rezystor, który można modyfikować podczas prototypowania i który można wyeliminować, jeśli nie jest on konieczny. W artykule omówiono kluczowe kwestie, które należy wziąć pod uwagę podczas korzystania z koralików ferrytowych do filtrowania zasilania. Szczegółowo prezentuje on również prosty model obwodu reprezentowanego przez koralik ferrytowy - wyniki symulacji pokazują dobrą korelację z rzeczywistą zmierzoną impedancją w stosunku do odpowiedzi częstotliwościowej przy zerowym prądzie polaryzacji DC.

Wpływ ten został opisany, jednak bez szczegółowej analizy zjawiska nasycenia magnetycznego rdzenia, ponieważ wymagałoby to rozbudowanego, oddzielnego artykułu. Pokazano jednak, że prąd polaryzacji DC, większy niż 20% prądu znamionowego, może spowodować istotny spadek indukcyjności. Używając koralików ferrytowych na liniach zasilających, należy dobrać je do planowanego poboru prądu w układzie, aby prąd nie powodował nasycenia rdzenia i pracy w zakresie nieliniowym.

Ponieważ koralik ferrytowy jest indukcyjny, nie należy go używać z kondensatorami filtrującymi o wysokim współczynniku dobroci bez starannej uwagi. Może to wyrządzić więcej szkody niż pożytku, powodując niepożądany rezonans w obwodzie. Metody tłumienia tego rezonansu, zaproponowane w tym artykule, oferują łatwe rozwiązanie dzięki zastosowaniu dużego kondensatora tłumiącego połączonego szeregowo z rezystorem, co pozwala uniknąć niepożądanego rezonansu.

tags: #filtracja #zasilania #jak #to #dziala #zasada

Popularne posty: